Organosubstituierte 1,2-Diborylalkene – Herstellung und Photoisomerisierung^[1]

Roland Köster**, Günter Seidel* und Bernd Wrackmeyer**

Max-Planck-Institut für Kohlenforschung^a, Kaiser-Wilhelm-Platz 1, W-4330 Mülheim an der Ruhr Laboratorium für Anorganische Chemie der Universität Bayreuth^b, Universitätsstraße 30, W-8580 Bayreuth

Eingegangen am 23. Juli 1992

Key Words: cis-1,2-Diborylalkenes, organo-, halosubstituted / cis/trans1,2-Diborylalkenes, organosubstitued, photoisomerization of / cis/trans-2-Boryl-1-silylalkenes, organosubstituted, photoisomerization of / Diorganoboryl groups of alkenes, or- and pl-B(pz)orbitals / Monoborylalkenes, organosubstituted

Substituted 1,2-Diborylalkenes – Preparation and Photoisomerization^[1]

The organo(halo)substituted cis-1,2-diborylalkenes cis-R₂BC(R) = C(Et)BEt₂ (Z)-1 to (Z)-14 are prepared [route I from Na[R₃BC \equiv CR] and ClBR₂; route II from cis-R₃SnC(R) = C(Et)BEt₂ and R_nBHal_{3+n}, n = 0-2; (Z)-11 (route III): cis-ClB(Ph)CH = C(Et)BEt₂ and Me₃SiOMe]. Their ¹¹B- and ¹³C-NMR data show the degree of pz(B)/(C = C) π overlap and are compared with the corresponding data of the monoboryl alkenes [(Z)-15, 16, (Z)-17, (Z)-23, (Z)-24, (Z)-26], the cis-2-boryl-1-silylalkenes [(E)-18, (E)-19, (E)-27, (E)-28], and the cis-2-boryl-1-stannylalkenes [(E)-20 to (E)-22]. — Compounds (Z)-3, (Z)-4, (Z)-9, (E)-18, and (E)-19 with one or two nearly coplanar pz(B) and pz(C = C) groups $(pl-R_2B)$ are isomerized by UV irradiation to their equilibria with the corresponding trans isomers (E)-3, (E)-4, (E)-9, (Z)-18, and (Z)-19, resp., with one or two nearly orthogonal pz(B) and pz(C = C) groups $(or-R_2B)$. Irradiation of (Z)-9 gives the isomer pair (Z/E)-iso-9 by a Ph/Et exchange between the two boron atoms.

Organosubstituierte *cis*-1,2-Diborylalkene^[2] der allgemeinen Formel I eignen sich als Chelatbildner für verschiedene Anionen^[1] und sind außerdem Ausgangsverbindungen für fünfgliedrige Organobor-Heterocyclen der allgemeinen Formeln II bis $X^{[3-10]}$.

Die Herstellung der *cis*-1,2-Diborylalkene erfolgt nach der 1-Alkinyl-Methode entsprechend Gl. (a)^[11] oder durch 1,2-Diborierung von Alkinen mit Tetrahalogendiboranen(4) nach Gl. (b)^[12] bzw. mit Triiodboran^[13] nach Gl. (c).

Chem. Ber. 1993, 126, 319-330 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1993

0009 - 2940/93/0202 - 0319 \$ 3.50 + .25/0

cis-1,2-Diborylalkene sind auch durch Stannyl/Boryl-Austausch nach Gl. (d)^[14] präparativ zugänglich. Außerdem führt die Reaktion der cis-1,2-Diborylalkene mit Triorganoboranen entsprechend Gl. (e) unter Boryl/Boryl-Substitution zu neuen Verbindungen dieses Typs^[15]. Erwähnenswert ist schließlich noch der Boryl-Austausch der cis-1,2-Diborylalkene mit Trihalogenboranen nach Gl. (f)^[15].

Die cis-1,2-Diborylalkene (Z)-1-(Z)-14 haben wir nach der Gl. (a) bzw. den Gl. (d)-(f) hergestellt. Die cis-Alken-Verbindungen (Z)-3-(Z)-5 sowie (Z)-7-(Z)-9 wurden zur Gewinnung der *trans*-Alken-Isomeren auch photochemisch untersucht.

Nr.	R ₂ B	R	Nr.	R ₂ B	R
(Z)-1	Me ₂ B	Н	(Z)- 9	Ph ₂ B	Et
(Z)- 2	Me ₂ B	Me	(Z)-10a	Ph(Cl)B	н
(Z)- 3	Et ₂ B	Me	(Z)-10b	Me(Br)B	н
(Z)- 4	Et ₂ B	Et	(Z)-11	Ph(MeO)B	Н
(Z)-5	Et ₂ B	Ph	(Z)-12a	Cl ₂ B	Me
(Z)-6	C₄H ₈ B	Me	(Z)-12b	Cl ₂ B	Et
(Z)-7	9-BBN	Me	(Z)- 13	Br ₂ B	Н
(Z)- 8	9-BBN	Et	(Z)- 14	Br ₂ B	Me

1-Alkinyl-Methode: Als Ausgangsverbindungen zur Herstellung der cis-1,2-Diborylalkene (Z)-1-(Z)-14 wurden die Verbindungen A-C eingesetzt.

Na ⁺	[Et ₃ BC≡CR]	
-----------------	-------------------------	--

Nr.	R
A	Me
В	Et
С	Ph

Die cis-1,2-Diborylalkene (Z)-3–(Z)-5 sowie (Z)-7–(Z)-9 wurden nach Gl. (a) aus den Natrium-1-alkinyltriethylboraten Na[Et₃BC \equiv CR]^[16] (A: R = Me; B: R = Et; C: R = Ph) mit den Halogen-diorganoboranen Et₂BCl, C₈H₁₄BCl und Ph₂BCl hergestellt. Ausbeute und Reinheit hängen entscheidend von der Art der Organosubstituenten ab.

(Z)-3 und (Z)-4 erhält man aus A bzw. B und Chlordiethylboran mit maximal 55% Ausbeute nur bei Einhalten bestimmter Temperaturgrenzen. Läßt man A mit ClBEt₂ in siedendem Diethylether reagieren und engt i. Vak. bei maximal 25°C (Bad) ein, kann vollkommen einheitliches, gelbliches (Z)-3 ($\delta^{11}B = 77.5$) mit etwa 50proz. Ausbeute neben einem hochviskosen C₄B₂-Carboran-haltigen Rückstand (¹¹B-NMR: $\delta = 18$; -44.5) isoliert werden. Destilliert man das Produktgemisch aber bis maximal 40°C (Bad) ab, besteht das flüssige Destillat (ca. 50%) aus etwa 75% (Z)-3 ($\delta^{11}B = 77.5$), ca. 14% BEt₃ (86) und ca. 11% Et₂Me₂C₄B₂Et₂-Carboran (18, -44.5)^[3b]. Wird das Reaktionsgemisch bis auf ca. 80°C erhitzt, steigen BEt₃- und Carboran-Anteile weiter an, die Ausbeute an (Z)-3 fällt bis auf unter 20%. – Auch das gelbe (Z)-4 ist aus **B** und CIBEt₂ nur mit maximal 54% Ausbeute zugänglich. Der rote, hochviskose Destillationsrückstand besteht aus einer Vielzahl von Organobor-Verbindungen (¹¹B-NMR: $\delta = 96$ (sh), 86, 74, 52, 18, 12, -46) mit maximal 4% C₄B₂Et₆-Anteil (+18, -46). – (Z)-5 erhält man aus C und CIBEt₂ mit nahezu 70proz. Ausbeute. Die C-Phenylgruppe drängt somit den unter Carboranbildung verlaufenden Substituentenaustausch deutlich zurück.

Beide 1,5-Cyclooctandiyl-substituierten cis-1,2-Diborylalkene (Z)-7 und (Z)-8 sowie die Diphenylboryl-Verbindung (Z)-9 lassen sich aus A oder B mit 9-Chlor-9-BBN bzw. aus B mit ClBPh₂ ergiebig (>80%) und in hoher Reinheit nach Gl. (a) herstellen. (Z)-7 fällt mit 81% Ausbeute praktisch frei von Nebenprodukten an. (Z)-8 ist mit 84% Ausbeute, das dunkelrote (Z)-9 mit ca. 90% Ausbeute zugänglich.

Die deutlichen Ausbeute-Unterschiede für beide Stoffgruppen (Z)-3-(Z)-5 bzw. (Z)-7-(Z)-9 findet man in deren Verhalten gegenüber UV-Licht wieder (s. u.). Das Reaktionsgeschehen wird offensichtlich durch die Wechselwirkung der pz-Orbitale der Bor-Atome mit der $\pi(C=C)$ -Bindung entscheidend beeinflußt.

cis-1,2-Diborylalkene aus cis-2-Boryl-1-stannylalkenen

Die cis-1,2-Diborylalkene (Z)-1, (Z)-2, (Z)-6, (Z)-10a, b und (Z)-12 – (Z)-14 haben wir aus cis-2-Boryl-1-stannylalkenen mit Trihalogenboranen (Cl₃B, Br₃B), Dihalogen-organo-boranen (Br₂BMe, Cl₂BPh) sowie mit Halogen-diorganoboranen [BrBMe₂, BrB(CH₂)₄] nach Gl. (d) hergestellt^[14,26a]. (Z)-1, (Z)-2, (Z)-6 und (Z)-13 wurden in Substanz gewonnen, (Z)-10a, (Z)-10b, (Z)-12 und (Z)-14 in Lösung NMR-spektroskopisch charakterisiert. (Z)-11 erhielt man aus (Z)-10a mit Me₃SiOMe nach Gl. (g)^[33,48].

Die Destannyloborylierung nach Gl. (d) erfolgt in Hexan bereits bei -78 bis -25 °C. Mit 90proz. Ausbeute erhält man aus (E)-20 mit BrBMe₂ die Verbindung (Z)-1. Das bei -78 °C quantitativ abgeschiedene Me₃SnCl kann von (Z)-1 leicht abgetrennt werden. Bei der Umsetzung von (E)-21 mit BrBMe₂ konkurriert die Übertragung einer Methylgruppe vom Zinn- auf das Bor-Atom mit der gewünschten Sn-C=-Bindungsspaltung, weshalb die Gewinnung von reinem (Z)-2 (42%) erschwert wird. Läßt man die Et₃Sn-Verbindung (E)-22 aber mit BrBEt₂ reagieren, wird die Transalkylierung zurückgedrängt, und die Destannyloborylierung erfolgt mit >90%. BrSnEt₃ läßt sich allefdings nicht so leicht abtrennen wie das schwerlösliche BrSnMe₃: (Z)-3 ist daher nur mit 63% Ausbeute zugänglich.

Monobor ylalkene

Die Monoborylalkene (Z)-15 bis (E)-28 haben wir in die NMR-Untersuchungen (Tab. 4) mit den 1,2-Diborylalkenen 1-14 (Tab. 3) einbezogen, um deren spektroskopische Daten sicher zuordnen zu können.

Nr.	R ₂ B	R	R'	Y
(Z)-15	Et ₂ B	Et	Et	Н
16	Et ₂ B	Et	Me	Me
(E)- 17	Et ₂ B	Et	Ме	Et
(Z)-17	Et ₂ B	Et	Et	Me
(E)- 18	Et ₂ B	Et	Ме	SiMe ₃
(E)- 19	Et ₂ B	Et	Et	SiMe ₃
(E)- 20	Et ₂ B	Et	н	SnMe ₃
(E)- 21	Et ₂ B	Et	Ме	SnMe ₃
(E)- 22	Et ₂ B	Et	Ме	SnEt ₃
(Z)-23	9-BBN	Et	Et	Н
(Z)-24	9-BBN	Н	Et	н
(Z)-25	9-BBN	Н	SiMe ₃	Н
(E)- 26	Cl ₂ B	Et	Ме	Et
(Z)- 26	Cl ₂ B	Et	Et	Ме
(E)-27	Cl ₂ B	Et	Me	SiMe ₃
(E)- 28	Et ₂ B	Et	C(Me)=CH ₂	SiMe ₃

(Z)-15 sowie (Z)-23–(Z)-25 wurden durch Hydroborierung der Alkine^[17] mit Tetraethyldiboran(6) bzw. mit (9H-9-BBN)₂ nach den Gl. (h₁) und (h₂) neu hergestellt. Das Boran 16 ist aus Natrium-triethyl-1-propinylborat^[16] mit $C_6H_5SO_3Me$ nach Gl. (i) zugänglich.

Die Monoborylalkene (Z/E)-17, (E)-18-(E)-22 sowie die trimethylsilylierte 2-Propenylverbindung (E)-28 sind nach Literaturangaben gewonnen worden. Die Dichlorboryl-Verbindungen (Z/E)-26 und (E)-27 stellten wir aus (Z/E)-17 bzw. (E)-18 mit Trichlorboran nach den Gl. (j_1) und (j_2) her.

trans-Diborylalkene aus den cis-Isomeren mit UV-Licht

Die cis-1,2-Diborylalkene (Z)-3–(Z)-5, (Z)-8 und (Z)-9 sowie die cis-2-Boryl-1-silylalkene (E)-18 und (E)-19 haben wir in Pentanlösung bei Raumtemp. bzw. bei – 30 °C mit einer Hg-Mittel/Hochdrucklampe UV-belichtet^[18], somit mit nicht monochromatischem UV-Licht ohne Ermitteln der Quantenausbeuten. Sensibilisatoren wie I₂, Ph₂CO oder (Me₃Si)₂ hatten auf die Photoreaktionen keinerlei Einfluß. Die Isomerisierungen wurden NMR-spektroskopisch (¹H,

¹¹B, ¹³C) verfolgt. Bei (Z/E)-4 ist das photostationäre Gleichgewicht von beiden Seiten eingestellt worden.

Herstellen der trans-1,2-Diborylalkene (E)-3, (E)-4 und (E)-9

Belichtet man bei Raumtemperatur die in Pentan gelösten Verbindungen (Z)-3-(Z)-5, (Z)-8 oder (Z)-9 1-2 Tage mit UV-Licht, bleiben (Z)-5 und (Z)-8 vollkommen unverändert, während (Z)-3, (Z)-4 und (Z)-9 nach Gl. (k) in ein Gleichgewichtsgemisch aus *cis*- und *trans*-Isomer umgewandelt werden (NMR).

Die Perethylverbindung (Z)-4 bildet in etwa 5proz. Pentanlösung nach 6stdg. UV-Belichten das Gleichgewichtsgemisch aus etwa 30% (E)-4 und ca. 70% (Z)-4. Die Photoisomerisierung ist kaum konzentrationsabhängig.

Die C-Substitution an der C=C-Bindung beeinflußt Geschwindigkeit und Gleichgewichtszustand der Photoisome-

risierung. Die C-Methylverbindung (Z)-3 wandelt sich beim 4stdg. UV-Belichten in ein Gemisch mit ca. 20% (E)-3 um, während die C-Phenylverbindung (Z)-5 unter identischen Bedingungen unverändert bleibt. Beim UV-Belichten von (Z)-3 bzw. (Z)-4 tritt bei Raumtemperatur weder die intramolekulare Ethan-Abspaltung unter C₃B₂-Ringbildung^[3] noch der intermolekulare Substituentenaustausch unter C₄B₂-Carboranbildung^[11d,e] ein.

 $R = Et: (Z)-4: \ \delta^{11}B = 78 \qquad (E)-4: \ \delta^{11}B = 87$ $mit \ pl-R_2B- und \ pl-Et_2B-Gruppen \qquad mit \ or-R_2B- und \ or-Et_2B-Gruppen$

(*E*)-4 kann aus dem thermisch stabilen (*Z/E*)-4-Gleichgewichtsgemisch durch μ -Komplexieren von (*Z*)-4^[1] angereichert werden. Mit Natriummethylat erhält man in Toluol bei Raumtemperatur eine Lösung, aus der das feste NaOMe-4^[1] leicht abgetrennt werden kann. Im Filtrat liegt anschließend ein (*Z/E*)-4-Gemisch mit ca. 70% (*E*)-4 vor. Belichtet man diese (*Z/E*)-4-Lösung in CDCl₃, wird das Gleichgewichtsgemisch mit ca. 70% (*Z*)-4 wieder zurückgebildet.

Die UV-Isomerisierung der cis-1,2-Diborylalkene wird auch deutlich durch die *B*-Substituenten beeinflußt. Während beide 9-BBN-Verbindungen [(Z)-7, (Z)-8] im UV-Licht vollkommen stabil sind, wird die *B*,*B*-Diphenylverbindung (Z)-9 bei Raumtemperatur in ein (Z/E)-9-Gemisch übergeführt (¹H-NMR; Tab. 2). In Pentan erreicht man das photostationäre (Z/E)-9-Gleichgewichtsgemisch mit ca. 32% (E)-9 nach ca. 8stdg. Belichten bei Raumtemperatur. In CD₂Cl₂-Lösung werden unter gleichen Bedingungen neben dem (Z/E)-9-Gemisch noch ca. 16% Isomerenpaar (Z/E)*iso-9* (¹H-NMR; Tab. 2) gebildet, bei dem es sich vermutlich um das cis/trans-Gemisch der 3,4-Diborylhexene mit jeweils zwei Ethylphenylboryl-Resten handelt. Offensichtlich können die *B*-Phenylsubstituenten über BPhB-Brücken intramolekular ausgetauscht werden.

Die cis-2-Boryl-1-silylalkene (E)-18 und (E)-19 lassen sich im UV-Licht nach Gl. (l) ebenfalls langsam in Gleichgewichtsgemische (ca. 30% trans-Isomer) umwandeln. (E)-18 war bisher in ein Gemisch mit maximal 10% trans-Isomer [(Z)-18] übergeführt worden^[180].

Das cis-2-Methyl-4-boryl-3-silyl-1,3-hexadien (E)-28 wird in CDCl₃-Lösung beim 6stdg. UV-Belichten um 20°C überhaupt nicht isomerisiert (¹H-NMR). Auch 3-Hexen bleibt in CDCl₃ nach 24stdg. UV-Belichten vollkommen unverändert (¹H-NMR).

Zum Mechanismus der Photoisomerisierung der Diborylalkene

Die Einstellung des thermisch stabilen Gleichgewichts der cis/trans-isomeren 1,2-Diborylalkene durch UV-Licht verläuft vermutlich über den ersten angeregten Singulett-Zustand S₁, aus dem nach ISC im Triplett-Zustand T₁ der cis/ trans-Isomerisierungsschritt erfolgt. Die Zwischenzustände S₁ und T₁ zeichnen sich durch eine gegenüber dem Grundzustand S₀ veränderte Geometrie aus. Während das Energieminimum im S₀-Zustand der C=C-Bindung eine maximale p π p π -Wechselwirkung fordert, haben die S₁- und T₁-Zustände ihr energetisches Minimum bei möglichst kleiner p π p π -Überlappung unter Einstellung eines Torsionswinkels von bis zu 90°.

Jede pz(B)-Orbital-Einstellung einer R_2B -Gruppe kann sich den pz(C=C)-Orbitalen mit den Grenzpositionen "orthogonal" (or-R₂B) und "coplanar" (pl-R₂B) annähern. Beispielsweise tendieren die cis-1,2-Diborylalkene (Z)-3 und (Z)-4 mit jeweils zwei pl-R₂B-Gruppen zu einem Grundzustand mit möglichst großer $pz(B)/(C=C)-\pi-Uberlappung$ (NMR; Tab. 3). Eine derartige Gruppierung ist gegenüber UV-Licht offensichtlich stabilisiert, falls wie bei den 9-BBNhaltigen (Z)-7 und (Z)-8 eine stark polarisierte $\pi(C=C)$ -Bindung mit zwei unterschiedlich substituierten R2B-Gruppen vorliegt. Durch UV-Anregung erfolgt hierbei keine Homolyse der π -Elektronen der C=C-Bindung. Sind jedoch wie bei der $(pl-Et_2B)_2$ -Verbindung (Z)-4 zwei gleiche Borylsubstituenten an eine praktisch nicht polarisierte $\pi(C=C)$ -Bindung gebunden, wird im UV-Licht das π -Elektronenpaar homolytisch relativ leicht gespalten, und die jetzt frei drehbare C-C-Bindung des Alkens stellt sich entsprechend den Energieinhalten von cis- und trans-Isomer ein.

Spektroskopische Charakterisierung der 1,2-Diborylalkene und ihrer Vergleichsverbindungen

Die Dialkylborylalkene (Z)- $3^{(2)}$ und (Z)- $4^{(2)}$ sind wegen des früheren Entwicklungsstands der NMR-Analytik noch nicht vollständig charakterisiert worden^[19a], was hier zusammen mit den Daten der neu hergestellten *cis*- und *trans*-1,2-Diborylalkene nachgeholt wird. UV-, IR- und Raman-Spektren: Die UV-Spektren von (Z)-4 und (Z/E)-4 (ca. 7:3) und von (Z)-8 sind durch Absorptionsmaxima bei 265 bzw. 250 nm für den $\pi\pi^*$ -Übergang der C=C-Bindung gekennzeichnet, bathochrom verschoben gegenüber der Ethen-Bande ($\lambda_{max} = 160$ nm). – Die C=C-Absorption (IR, Raman) sämtlicher cis-1,2-Diborylalkene findet man bei 1555 [(Z)-4, (Z)-8] bis 1563 cm⁻¹ [(Z)-7].

Massenspektren: Die linienarmen EI-Massenspektren der organosubstituierten cis-1,2-Diborylethene haben jeweils einen Molekülpeak M⁺ von mittlerer [(Z)-5, (Z)-7] bis hoher [(Z)-8] relativer Intensität. Basismasse von (Z)-3 und (Z)-4 ist m/z 69 (Et₂B⁺), die bei (Z)-5 mit nur ca. 66proz. rel. Intensität auftritt. Weitere B₁-Basismassen sind m/z 41 für EtBH⁺ [(Z)-7, (Z)-8], m/z 165 für Ph₂B⁺ [(Z)-9] und m/z117 für vermutlich PhBEt⁺ [(Z)-5]^[196].

Tab. 1. Auszüge aus den Massenspektren der organosubstituierten cis-1,2-Diborylalkene [a] EI-Massenspektren (70 eV). Angegeben ist jeweils die Masse mit dem häufigsten Isotop ¹²C, ¹H und ¹¹B

Verbindung		Gef. m/z (% rel. Intensität) ^[a]			
Nr.	Mol- masse	Mol- masse M ⁺ Basis- Weiter peak Bruchs		Weitere charakteristische Bruchstückmassen	
(Z)- 3	206.0	206(8)	69	177(15), 149(8), 93(15), 55(28), 41(85)	
(Z)-4	220.0	220(9)	69	191(15), 93(13), 41(89)	
(Z)-5	268.1	268(20)	117	239(36), 93(13), 89(19), 69(66), 41(94)	
(Z)-7	258.1	258(21)	41	229(22), 173(10), 159(13), 121(15), 109(15), 93(15), 79(22), 69(40), 55(13)	
(Z)-8	272.1	272(55)	41	243(55), 201(18), 187(22), 173(31), 135(20), 93(22), 69(55)	
(Z)-9	316.1	316(4)	165	287(68), 242(7), 141(17), 117(96), 89(44), 69(21), 41(67)	

Bei den Zerfällen der organosubstituierten *cis*-1,2-Diborylethene tritt die B₂-Bruchstückmasse m/z [M – 29]⁺ auf, der jedoch nur ausnahmsweise [(Z)-3] die bekannte^[19] Abspaltung von 28 Neutralmasseneinheiten folgt. (Z)-5 und (Z)-9 haben ein sehr intensives Fragment m/z 117 (B₁), das wir dem [PhBEt]⁺-Ion zuordnen. Vermutlich erfolgt im Massenspektrometer ein dyotroper (?) Phenyl/Ethyl-Austausch. In den Spektren der 9-BBN-Verbindungen (Z)-7 und (Z)-8 tritt jeweils m/z 173 (B₁) eines unbekannten Bruchstück-Ions C₁₂H₁₈B⁺ auf.

NMR-Spektroskopische Ergebnisse

Die ¹H-NMR-Daten der organosubstituierten *cis/trans*-1,2-Diborylethene und der 2-Boryl-1-silylalkene sind in Tab. 2, die ¹³C- und ¹¹B-NMR-Signallagen der neuen Verbindungen in den Tabellen 3-5 zusammengefaßt.

^{*i*}*H-NMR*: Sämtliche Strukturvorschläge sind mit Lage und Aufspaltungsmustern der ^{*i*}*H*-Resonanzen vereinbar. Die ^{*i*}*H*-NMR-Daten des Et₂B(Et)C = Fragments in z.B. (Z)-3 und (Z)-4 ähneln weitgehend den vergleichbaren (E)-18 und (E)-19^[20,21]. Zur quantitativen Analyse von (Z/E)-4-Gemischen eignen sich die ^{*i*}*H*(CH₂C=)-NMR-Signale von (Z)-4 (δ^{1} H = 2.20) bzw. (E)-4 (1.85) (Tab. 2). Beim trans-Isomer (E)-4 fällt die Entschirmung aller acht H-Atome der BCH₂-Gruppen auf, deren Quartett (δ^{1} H = 1.29) deutlich abgesetzt ist vom Triplett der Methylprotonen (1.01) beider Et₂B-Gruppen mit einem zur π (C = C)-Bindung bevorzugt orthogonal eingestellten pz(B)-Orbital (*or*-Et₂B). — Die = CEt-Protonen von (Z)-8 und (Z)-9 konnten nicht eindeutig zugeordnet werden.

Tab.	2.	¹ H-NMR-Daten der	organosubstituierten	1,2-Diborylal-
		kene und 2-Boryl	-1-silylalkene in CDCl	.[a] 3

Verbindung		δ ¹ H[a]		
* cromoung	R ₂ B	RC=	=CEt	BEt ₂
cis-3	1.02 0.9	1.67	2.19 0.9	1.02 0.9
trans-3	1.29	1.38	1.90 0.9	1.29 0.9
cis-4	1.07 0.89	2.: 0.	20 91	1.07 0.89
trans-4	1.29 1.01	1. 0.	85 82	1.29 1.01
<i>cis</i> - 5 ^[b]	1.35 ca.1.0	7.35; 7.05	2.05 0.87	1.35 ca.1.0
cis-7	ca.1.8(10H) 1.3(4H)	1.88	2.19 1.01	1.23 0.93
cis-8	1.84(10H) 1.25(4H)	2.34; 2.20 1.03; 1.01		1.25 0.93
<i>cis-</i> 9 ^[b]	7.7 - 7.5 ^[c]	2.50; 2.45 1.00; 1.12		0.88 0.75
trans-9 ^[b]	7.7 - 7.5 [c]	2.04	;1.89	1.46 1.19
c/t-iso-9		2.67;	2.68	
	Me ₃ Si			
cis-18	0.01	1.76	2.03 0.95	1.29 0.98
trans-18	0.13	1.47	2.23 0.90	1.28 ca.1.0
cis- 19	0.00	2.21; 2.07 1.00; 0 .94		1.29 0.98
trans-19	0.15	2.22; 1.78 1.0 - 0.8 [c]		1.30 ca.1.0

^[a] Falls nicht anders vermerkt. - ^[b] In CD_2Cl_2 . - ^[c] Im einzelnen nicht zuzuordnen.

Lage und Aufspaltung der ¹H(CH₂B)-Resonanzen von (Z)-3 und (Z)-4 verändern sich bei -78 °C gegenüber Raumtemperatur nicht. Bei (E)-18 sind die BCH₂-Protonen der or-Et₂B-Gruppe wegen gehinderter Rotation diastereotop^[22]. Auch bei (Z)-8 ändert sich zwischen -75 und -80 °C wegen deutlich verlangsamter Rotation das Aufspaltungsmuster der verbreiterten ¹H(CH₂B)-Resonanzen. Bei weiter gesenkter Temperatur erfolgt der Übergang vom A₂B₃ zum ABC₃ Spinsystem.

¹³C-NMR: Alle Signale von (Z)-2-(Z)-10a,b und (Z)-13 (Tab. 3) entsprechen den Strukturvorschlägen. Zum Verständnis der Daten sind die δ^{13} C-Werte der Monoborylalkene (Tab. 4) und der *cis/trans*-2-Boryl-1-silylalkene (Tab. 5) hilfreich.

Verbin-	δ ¹¹ Β	δ^{13} C [J _{SiC} (Hz)]				
dung		R ₂ B	RC=	=CEt	BEt ₂	
(Z)-2	76;81.5	13.0	142.5 13.0	171.0 22.7 12.0	19.6 9.2	
(Z)-3	77.5 [b] 77.4;78(sh)	19.6 9.0	157.5 15.1	156.9 23.3 14.3	19.6 9.1	
(E)-3	87	22 9	n.b.	n.b. 28.4 15	22 9	
(Z)-4	78.0	19.9 8.9	159 22. 14.	[c] 6 9	19.9 8.9	
(E)-4	87.1	22.1 9.0	148 27. 15.	9 2	22.1 9.0	
(Z)-5 ^[d]	77;81 76.5;80.5 ^[b]	20.9 8.9	$ \begin{array}{c} 155 \\ 145.1 \\ 129.0 \\ 128.3 \\ 125.6 \end{array} (p) $	167.5 25.4 14.4	20.0 9.5	
(Z)-6	80.5	28.0 28.3	136.5 16.9	1 76.5 23.6 12.2	20.5 9.6	
(Z)-7	76.5 76.3;78.3(sh)	31.4; 33.5; 23.3	137.5 15.2	177 23.5 12.2	19.9 9.5	
(Z)-8	76.5 ^[c] 77.2 ^[b]	31.1; 33.7; 23.3	144.5 22.7; 13.4;	177.5 22.8 16.5	19.8 9.5	
(Z)- 9 ^[d]	69.5;80	143.5 (i) 137.9 (o) 127.9 (m) 131.0 (p)	153; 1 23.3; 15.4;	64.5 ^[e] 25.2 15.7	22.2 8.8	
(E)- 9	71;81	142.9 (i) 137.4 (o) 127.6 (m) 131.3 (p)	146.5; 27.4; 14.8;	158 ^[e] 31.2 14.9	22.0 9.2	
(Z)-10a	57;74	137.0 136.4 128.3 133.5	127	199 29.7 12.2	18.9 10.1	
(Z)-10b	66.5; 73	14.3	132	201 29.2 11.9	19.0 10.2	
(Z)-13	52.5;68.5	_	133	189 29.3 11.5	19.4 9.8	

Tab. 3. ¹³C- und Heteroatom-**NMR-Daten** der organosubstituierten *cis/trans*-1,2-Diborylalkene^[a]

^[a] In CDCl₃ gemessen, falls nicht anders vermerkt. – ^[b] Messung bei 160 MHz. – ^[c] δ^{13} C = 159 (schaff) von (Z)-4 bei –78°C in CD₂Cl₂. – ^[d] In CD₂Cl₂. – ^[e] Die ¹³C-NMR-Signale der EtC = CEt-Gruppierung lassen sich bisher nicht sicher zuordnen.

Die δ^{13} C-Werte der C=C-Atome nehmen einen Bereich von 126 (16) bis 201 [(Z)-10b] ein und lassen sich bei den Monoborylalkenen (Tab. 4) sowie den (E/Z)-2-Boryl-1-silylalkenen (Tab. 5) aufgrund der merklich verbreiterten ¹³(C=CB)-Resonanzen mit partiell relaxierter skalarer

Tab. 4. Ausgewählte ¹³C- und ¹¹B-Resonanzen der Monoborylal-

kene^[a]

Nr.	$\delta^{13}C^{\alpha}$	$\delta^{13}C^{\beta}$	$\delta^{11}B$	Lösungs- mittel
(Z)-15	148.9	145.4	76.5	C ₆ D ₆
16	143.6	126.4	81.0	C_6D_6
(Z)-21	163.0	133.6	83.3	CDCl ₃
(Z)-23	146.4	149.6	78.6	CDCl ₃
(Z)-24	134.8	156.4	78.4	CDCl ₃
(Z)-25	151.8	157.2	78.5	CDCl ₃

^[a] Zum Vergleich mit den Werten der Tab. 3.

Tab. 5. ¹³C- und Heteroatom-NMR-Daten der organosubstituierten (E/Z)-2-Boryl-1-silylalkene (18, 19) in CDCl₃

Verbin-	δ ¹¹ B s ²⁹ s;	δ ¹³ C [J _{SiC} (Hz)]				
dung	0 31	Me ₃ Si	RC=	=CEt	BEt ₂	
cis-18	82.5 -6.1(²⁹ Si)	-0.9[50.6]	130.2[70.2] 15.3	161 22.4 12.8	21.1 9.3	
trans-18	86 -8.8(²⁹ Si)	0.6[50.9]	129.0[66.7] 22.1	165 27.1 14.6	21.8 8.8	
cis-19	83.5 -6.8(²⁹ Si)	0.0[49.9]	137.0[70.2] 22.0 13.7	161.5 23.4 15.5	21.3 9.1	
trans-19	86 -9.4(²⁹ Si)	1.3[50.6]	136.9[66.4] 27.2 14.5	165 30.6 16.2	21.9 8.9	

Kopplung ¹J(¹³C¹¹B)^[23] eindeutig zuordnen. Bei den 1,2-Diborylalkenen ist die Unterscheidung der C=C-Atome mittels eines ¹H-gekoppelten ¹³C-NMR-Spektrums einfach, z.B. bei (Z)-10a, b und (Z)-13 mit BCH = - und BCEt = -Gruppierung. In den übrigen Fällen ist die Zuordnung schwierig, da die Linienbreiten der ${}^{13}C(=CB)$ -Resonanzen im ${}^{1}H$ -entkoppelten und ¹H-gekoppelten Spektrum nicht signifikant verschieden sind. Dies gilt auch für Messungen bis -60 °C, um den ¹¹B-Einfluß auf die Linienbreite zu vermindern. Selektive Entkopplungsversuche wie für die = CMe-Protonen führten zu keinen eindeutigen Befunden. Letztlich gelang aber, bei Ausnutzung des Nuclear-Overhauser-Effekts (NOE) mittels Differenzspektroskopie^[24], die Zuordnung der $^{13}C(=CB)$ -NMR-Signale (vgl. Abb. 1). Als Kriterium diente bei (Z)-3 und (Z)-7 die unterschiedliche räumliche Nähe der $^{13}C(C = C)$ -Kerne zu den = CMe-Protonen und bei (Z)-5 die der *ortho*-Protonen der = CPh-Gruppe.

In den Alkenylboranen ist die Minderung der magnetischen Abschirmung des zum Bor-Atom β -ständigen olefi-

Abb. 1. Zuordnung der ¹³C(BC=)-Atome zu dem jeweiligen ¹¹B-Kern von (Z)-7 mittels NOE-Differenzspektren ohne (a) und mit (b) selektiver Anregung der = CCH₃-Protonen. (a) 75.5-MHz-¹³C{¹H}-NMR-Spektrum (olefinische Kohlenstoff-Atome) von (Z)-7 in CDCl₃ bei -50°C [bei dieser Temperatur erscheinen die ¹³C-NMR-Signale relativ schaft ($h_{i} \approx 8$ Hz)]. (b) NOE-Differenzspektrum unter gleichen Bedingungen, jedoch mit selektiver Anregung der =C-CH₃-Protonen (Energie: 35 L für 6 s). Aufgenommen wurden 32 Experimente mit je 8 Durchgängen on- und off-resonance

nischen ¹³C-Kerns (neben den üblichen Substituenteneffekten) mit der Möglichkeit effizienter CB-(pp)n-Wechselwirkungen verknüpft^[23], was schon früher vermutet wurde^[25] und jetzt systematisch belegt wird. Die bisher bekannten ¹³C-NMR-Daten einiger Monoborylalkene^[26] und 1,2-Diborylalkene^[27] konnten noch nicht eingeordnet oder interpretiert werden. Bei den an den Bor-Atomen ungleich substituierten cis-1,2-Diborylalkenen (Z)-2, (Z)-6-(Z)-8, (Z)-10a, b und (Z)-13 differiert die magnetische Abschirmung der sp^2 -hybridisierten ¹³C-Kerne deutlich. Der Vergleich mit entsprechenden δ^{13} C-Werten der monoborylierten Alkene legt nahe, daß im zeitlichen Mittel eine der Boryl-Gruppen gegen die B-C=C-B-Ebene verdrillt sein muß (or- R_2B), die andere Boryl-Gruppe aber eine coplanare Einstellung (pl-R₂B) sucht. CB-(pp) π -Wechselwirkungen sollten für die or-R₂B-Gruppe vernachlässigbar klein sein und nur wenig zur Ent-

Chem. Ber. 1993, 126, 319-330

schirmung des β -ständigen = C-Atoms beitragen^[19a], im Gegensatz zur pl-R₂B-Gruppe (vgl. auch die δ^{13} C-Daten von Allyl-Kationen^[28], die isoelektronisch mit Alkenylboranen sind). Bereits geringe Unterschiede im sterischen Anspruch oder in den gegenseitigen sterischen Wechselwirkungen der C=C-Substituenten können bei den ungleich substituierten cis-1,2-Diborylalkenen zu unterschiedlichen CB-(pp) π -Überlappungen führen. Einer der beiden ¹³C(=C)-Kerne wird dann – wie bei (Z)-6-(Z)-8 mit z.B. δ^{13} C= ca. 177 – signifikant entschirmt.

Berechnungen der Energieinhalte und der CB-Bindungslängen im anionischen $[F_2B = CH_2]$ -Molekül ergeben deutlich verschiedene Werte bei *pl*- bzw. *or*-F₂B-Einstellung am sp²-hybridisierten C-Atom ($\Delta E = 33.4$ kcal mol⁻¹; d =1.442; 1.484 Å)^[29]. – Die Konformation *or*-R₂B ist NMRspektroskopisch zwar bereits verschiedentlich nachgewiesen worden^[22,30,31], doch gibt es bisher keine NMR-spektroskopischen Gegenüberstellungen der Signallagen bei *or*- und *pl*-R₂B-Konformationen eines gleichartig substituierten Alkens wie (Z/E)-**3**, -**4** oder -**9**.

Sind die Reste R wie z. B. bei R = iPr relativ sperrig, ist die or-R₂B-Stellung bereits bei Raumtemperatur "eingefroren"^[22,30,31]. Für alle Beispiele der or-R₂B-Konformation findet man die Resonanz des β -ständigen ¹³C(=C)-Kerns bei verhältnismäßig niedrigen Frequenzen, im Gegensatz zu Fällen mit begünstigter pl-R₂B-Konformation; vgl. z. B. $\delta^{13}C^{\beta}$ für (Z)-15 und 16 exemplarisch für pl-R₂B bzw. or-R₂B. Der $\delta^{13}C^{\beta}$ -Wert von 16 verdeutlicht, daß die *cis*-Stellung von Et₂B-Gruppe und Alkylrest für eine pl-Et₂B-Gruppe nicht förderlich ist. In diesem Sinn lassen sich auch die $\delta^{13}C(=C)$ -Werte für (E)-4 mit or-Et₂B (148.0) im Vergleich zu (Z)-4 mit pl-Et₂B (159.0) verstehen.

¹¹B-NMR: Die ¹¹B-Abschirmung bei Alkenyl-dialkylboranen nimmt zu, wenn BC-(pp) π -Wechselwirkungen gut möglich sind. Insofern stützen die δ^{11} B-Werte die Interpretation der $\delta^{13}C(=C)$ -Werte, auch wenn der Δ^{11} B-Bereich relativ klein ist. Die ¹¹B-NMR-Signale der organosubstituierten (Z)-1,2-Diborylalkene mit bevorzugter *pl*-R₂B-Gruppe liegen mit $\delta = 74-80$ im Erwartungsbereich für Dialkylvinylborane^[19a] (Tab. 3). Die ¹¹B-Kerne der Perethyl-Verbindung (E)-4 ($\delta = 87$) sind jedoch wegen bevorzugter *or*-R₂B-Konformation deutlich stärker ($\Delta^{11}B = ca. 9$) entschirmt. Wie bei den 2-Boryl-1-silylalkenen (E/Z)-18 und -19 [$\Delta^{11}B$ ca. 3; Tab. 5]^[32] ist dies auf die Schwächung der BC-(pp) π -Wechselwirkungen zurückzuführen. Ähnlich gering abgeschirmt sind auch die ¹¹B-Kerne in 3-(Dialkylboryl)-4-alkylsilolen und -stannolen^[31,32] mit anderen 2,5-Substituenten als Wasserstoff. Auch hier ist ¹H- und ¹³C-NMRspektroskopisch die bevorzugte or-R₂B-Konformation belegt (s.o.).

Die CPh-Verbindung (Z)-5 und die Ph_2B -Verbindung (Z)-9 haben wegen unterschiedlicher elektronischer Umgebung beider Bor-Atome jeweils eine asymmetrische ¹¹B-Resonanz aus zwei sich stark überlappenden Signalen. Die ¹¹B-NMR-Signallage von (E)-9 ist der von (Z)-9 sehr ähnlich, d.h. bei (E)-9 treten besonders entschirmte ¹¹B-Kerne wie bei (E)-4 nicht auf. – Zwei gut getrennte ¹¹B-NMR-Signale werden für (Z)-2^[33] beobachtet mit schärferem Signal für den stärker abgeschirmten ¹¹B(Me₂B)-Kern ($\delta = 74$, bevorzugt pl-Me₂B) und breiterem Signal für den weniger abgeschirmten ¹¹B(Et₂B)-Kern ($\delta = 81.5$, bevorzugt *or*-Et₂B). Dies ist im Einklang mit der Interpretation der $\delta^{13}C(C=C)$ -Werte. - Für (Z)-6 findet man nur ein ¹¹B-NMR-Signal ($\delta = 80.5$). Berücksichtigt man jedoch im Vergleich zu offenkettigen Verbindungen den entschirmenden Einfluß auf das Bor-Atom im gespannten Fünfring^[19a] ($\Delta^{11}B = ca. 5-6$), resultiert der gleiche Trend wie bei (Z)-8.

Bei (Z)-1, (Z)-10a, b, (Z)-13 und (Z)-14 fällt auf, daß die ¹¹B(Et₂B)-Kerne vergleichsweise gut abgeschirmt sind, obwohl die $\delta^{13}C(=C)$ -Werte die Bevorzugung der *or*-Et₂B-Konformation nahelegen. Die Erklärung ist in einer schwachen koordinativen BBr···BEt₂- bzw. BCl···BEt₂-Bindung zu suchen, im Gegensatz zur ausgeprägten BO – BEt₂-Bindung in (Z)-11 ($\delta^{11}B = 25$). In den genannten *cis*-1,2-Diborylethenen bestehen gute Voraussetzungen für derartige Wechselwirkungen, da die X₂B- oder X(R)B-Gruppe aus sterischen Gründen die *pl*-X₂B bzw. *pl*-X(R)B bevorzugt und damit eine *or*-Et₂B-Konformation erzwingt. Die δ^{11} B-Werte für solche *or*-Et₂B-Gruppen weisen deutlich auf BHalB-Brükken hin, die für den Substituentenaustausch schon immer postuliert^[34] und kürzlich im kristallisierten 9-F-9-BBN nachgewiesen wurden^[35].

²⁹Si-NMR: Die Lagen der ²⁹Si-NMR-Signale von (E/Z)-18 bzw. (E/Z)-19 (Tab. 5) sind gut unterscheidbar, wobei die ²⁹Si-Kerne der *trans*-Isomeren (Z)-18 und (Z)-19 gegenüber dem jeweiligen *cis*-Isomer stärker abgeschirmt sind $(\Delta^{29}\text{Si} = \text{ca.} -2.5)$. Dies entspricht genau dem Trend für $\delta^{119}\text{Sn} = -7.7$) der zu (E/Z)-18 analogen Zinn-Derivate^[32].

Experimenteller Teil

Sämtliche Reaktionen und Messungen wurden bei striktem Ausschluß von Luftsauerstoff und Feuchtigkeit unter Argon als Schutzgas durchgeführt. - C-, H- und B-Werte: Dornis und Kolbe, Mülheim an der Ruhr.

UV^[36a]: Cary 3000. – IR^[36a]: Nicolet 7000. – Raman^[36a]: Coderg T 800, Ar-Laser 4880 Å. – MS^[36b]: EI-MS (70 eV), Finnigan MAT CH 5 für flüssige oder feste Proben. – ¹H-NMR^[37a]: Bruker AC 200. – ¹¹B-NMR: AC 200^[37a] (64.2 MHz) und Bruker AM^[37b] 500 (160.5 MHz), Et₂O-BF₃ extern. – ¹³C-NMR^[37a]: Bruker AC 200 (50.3 MHz), Me₄Si extern. – ¹³C-NMR-Messungen^[37b] für heteronukleare NOE-Differenzspektren [Bruker AC 300^[37b] (75.5 MHz)] von (Z)-3, (Z)-5 und (Z)-7 (vgl. Abb. 1 für experimentelle Bedingungen). – Belichtungsapparatur^[38]: Hg-Mittel/Hochdruck-lampe HPK 125 WIL, Philips.

Ausgangsverbindungen: Na[Et₃BH]^[16,39], A^[16], B, C^[16b], (Z)-3, (Z)-4^[40], 16^[41], (Z/E)-17^[42], (E)-18, (E)-19^[43], (E)-20, (E)-21, (E)-22^[32], (E)-28^[43c], Et₃B^[44], (Et₂BH)₂^[45], (9 H-9-BBN)₂^[45], ClBEt₂^[45,47], 9-Cl-9-BBN, ClBPh₂^[45], BrBMe₂, BrBC₄H₈, BrBEt₂^[46,47], Cl₂BPh, Br₂BMe, Br₂BPh^[46,47] und Me₃SiOMe stellte man nach Literaturangaben her. – Bezogen wurden *cis*-3-Hexen (hauseigener Vorrat), 1-Butin (Matheson), 1-Hexin (Fluka), 3-Hexin (Schuchardt), BCl₃ (Messer-Griesheim) und BBr₃ (Fluka). – Pentan, Hexan, Benzol, [D₆]Benzol, Toluol, Et₂O, CD₂Cl₂, CDCl₃, THF und [D₈]THF wurden vor Gebrauch luft- und wasserfrei gemacht und unter Argon aufbewahrt.

Kristallisiertes Natrium-triethylhydroborat^[16,39] mit Schmp. + 34.5 °C (mit 0.5 mol Mesitylen im Kristall)^[39b]: IR (Cyclohexan): $\tilde{v} = 1835 \text{ cm}^{-1}$ (BH)^[39]. - ¹H-NMR (C₆D₆): $\delta = 6.72$ (3 H), 2.18 (9 H), 1.03 (18 H), 0.24 (12 H) und ca. -0.4 (2 H). - ¹¹B-NMR (C₆D₆): $\delta = -12$ (d, $h_{\frac{1}{2}} = 225$ Hz). - ¹³C-NMR (C₆D₆): $\delta = 137.8$, 21.4 (Mesitylen), ca. 14 (br. BCH₂) und 12.7 (CH₃).

Natrium-triethyl-1-propinylborat (A)^[16,39a]: Schmp. 99°C. – ¹H-NMR ([D₈]THF): $\delta = 1.70$ (3H), 0.72 (9H), -0.07 (6H). – ¹¹B-NMR ([D₈]THF): $\delta = -18.4$ ($h_1 = 45$ Hz). – ¹³C-NMR ([D₈]THF): $\delta = ca. 110$ ($J_{CB} = ca. 66$ Hz), 85.8 (br.), 17.3 ($J_{CB} = ca. 49$ Hz), 11.7 (BCH₂CH₃), 4.8 (CCH₃).

Natrium-1-butinyltriethylborat (**B**)^{16,39a]}: Schmp. 75°C. – ¹H-NMR ([D₈]THF): $\delta = 2.07$ (2H), 1.06 (3H), 0.74 (9H), -0.06 (6H). – ¹¹B-NMR ([D₈]THF): $\delta = -18.5$ ($h_{\frac{1}{2}} = 45$ Hz). – ¹³C-NMR ([D₈]THF): δ ca. 110 (br. CB), 93.6 (br.), 17.3 ($J_{CB} =$ ca. 55 Hz), 11.9 (BCH₂CH₃), 14.4 (CCH₂), 16.5 (CCH₂CH₃).

Natrium-triethyl(phenylethinyl)borat (C)^[16,39a]: Schmp. 133 °C. – ¹H-NMR ([D₈]THF): δ = 7.19 (2H), 7.06 (2H), 6.95 (1H), 0.80 (9H), 0.07 (6H). – ¹¹B-NMR ([D₈]THF): δ = –17.8 (h_{\pm} = 45 Hz). – ¹³C-NMR ([D₈]THF): δ = 130.8 (*i*), 131.8 (*o*), 128.1 (*m*), 124.5 (*p*), ca. 128 (br. CB), 94.2 (br.), 17.5 (J_{CB} = ca. 51 Hz), 12.4.

1. Organosubstituierte 1,2-Diborylalkene

a) Aus A-C mit Halogen-diorgano-boran

(Z)-2,3-Bis(pl-diethylboryl)-2-penten [(Z)-3]: Zu 4.97 g (31 mmol) A in 80 ml Et₂O tropft man in 30 min 3.29 g (32 mmol) ClBEt₂ in 10 ml Ether (Temperaturanstieg bis zum Rückfluß). Nach 4stdg. Erhitzen unter Rückfluß filtriert man 2.01 g Feststoff (ber. 1.81 g NaCl) ab, entfernt das Lösungsmittel bei Atmosphärendruck, den restlichen Ether i. Vak. (14 Torr) (Bad $\leq 20^{\circ}$ C) und erhält 3.16 g (49%) klares, gelbliches (Z)-3 (δ^{11} B = 77.5) mit Sdp. 36°C/0.001 Torr neben 1.12 g hochzähem Rückstand (δ^{11} B = +18; -44.5). – MS- und NMR-Daten: Tab. 1-3.

 $C_{13}H_{28}B_2$ (206.0) Ber. C 75.78 H 13.69 B 10.49 Gef. C 75.44 H 13.18 B 10.35

(Z)-3 im Gemisch mit viel $Et_2Me_2C_4B_2Et_2$ (Erwärmen bis maximal $80^{\circ}C$): Man tropft 52.2 g (0.5 mol) ClBEt₂ in 100 ml Et₂O während ca. 2 h zur Lösung von 78.55 g (0.49 mol) A in 500 ml Et₂O (Temperaturanstieg bis zum Sieden) und erhitzt 3 h unter Rückfluß. Nach Abfiltrieren von 29.5 g NaCl (ber. 29.2 g) wird unter Atmosphärendruck die Hauptmenge Et₂O (Bad $\leq 80^{\circ}$ C) abdestilliert und anschließend i. Vak. (12 Torr) das restliche Et₂O und BEt₃ (Bad $\leq 50^{\circ}$ C) entfernt. Aus dem Rückstand [¹¹B-NMR: $\delta = 87$ (26% BEt₃), 77.5 [43% (Z)-3], 18.2, -44.5 (ca. 31% Et₂Me₂C₄B₂Et₂)] gewinnt man beim Destillieren i. Vak. 39.3 g gelbliche Flüssigkeit [¹¹B-NMR: $\delta = 87$ (22%), 77.5 (20%), 18.2, -44.4 (ca. 58%)] mit Sdp. 35-45°C/0.001 Torr (Bad $\leq 80^{\circ}$ C) und 24 g orangerote, hochzähe Masse.

(Z)-3 im Gemisch mit wenig $Et_2Me_2C_4B_2Et_2$ (Erwärmen bis maximal 40°C): Die Lösung aus 4 g (38 mmol) ClBEt₂ in 20 ml Et₂O

wird in 20 min zu 6 g (37 mmol) A in 40 ml Et₂O getropft (Temperaturanstieg bis zum Rückfluß) und erwärmt ca. 4 h unter Rückfluß. Nach Abfiltrieren von NaCl wird i. Vak. (12 Torr) vollständig eingeengt (Bad ≤ 40 °C) und ein Rückstand mit 14% BEt₃ ($\delta^{11}B = 87$), 75% (Z)-3 (77.5) und 11% Et₂Me₂C₄B₂Et₂ (18.2; -44.5) erhalten. Im Vak. gewinnt man daraus 3.63 g (45%) gelbliche Flüssigkeit mit Sdp. 45 °C/0.001 Torr, ¹¹B-NMR: $\delta = 87$ (7%), 77.5 (75%), 18.2; -44.5 (18%).

(Z)-3,4-Bis(pl-diethylboryl)-3-hexen [(Z)-4]: Zu 80.1 g (460 mmol) B in 400 ml Et₂O tropft man in 2.5 h die Lösung von 49.11 g (470 mmol) ClBEt₂ in 50 ml Et₂O, wobei das Lösungsmittel zum Sieden kommt. Nach 3stdg. Erhitzen der gelben Lösung unter Rückfluß, Abfiltrieren des NaCl und Abdestillieren der Hauptmenge Et₂O unter Atmosphärendruck sowie des restlichen Ethers i. Vak. (14 Torr) werden 53.49 g (53%) gelbes (Z)-4 mit Sdp. 60-66 °C/0.001 Torr abdestilliert: 36 g roter, hochzäher Rückstand [$\delta^{11}B = 96$ (sh), 86, 74, 52, 18 (+sh), 12, -46] mit C₄B₂Et₆ (+18; -46) $\leq 5\%$. – MS- und NMR-Daten: Tab. 1–3.

(Z)-1,2-Bis(pl-diethylboryl)-1-phenyl-1-buten [(Z)-5]: 45.4 g (435 mmol) ClBEt₂ tropft man in 2 h zur Lösung von 91.8 g (413 mmol) C in 500 ml Et₂O. Unter Temperaturanstieg fällt NaCl aus. Nach 5stdg. Erhitzen unter Rückfluß filtriert man 25.5 g NaCl ab, engt i. Vak. (14 Torr; Bad. ≤60 °C) ein und erhält 99.7 g dunkelroten Rückstand, von dem 75 g (68%) gelbes, öliges (Z)-5 mit Sdp. 76-80 °C/0.001 Torr abdestillieren. – MS- und NMR-Daten: Tab. 1-3.

C₁₈H₃₀B₂ (268.1) Ber. C 80.64 H 11.26 B 8.06 Gef. C 79.96 H 11.17 B 8.66

(Z)-2-(1,5-Cyclooctandiylboryl)-3-(diethylboryl)-2-penten [(Z)-7]: Die Lösung von 46.27 g (296 mmol) 9-Cl-9-BBN in 300 ml Et₂O tropft man in 2 h zur Lösung von 51.7 g (323 mmol) A in 400 ml Et₂O (Temperaturanstieg auf 27°C). Nach 4stdg. Erhitzen unter Rückfluß filtriert man 17.13 g (91%) NaCl ab, engt i. Vak. (14 Torr; Bad <60°C) ein und erhält 61.47 g (81%) farbloses (Z)-7 mit Sdp. 109°C/0.001 Torr. – IR (unverdünnt): $\tilde{v} = 1560 \text{ cm}^{-1}$ (C=C). – Raman (unverdünnt): $\tilde{v} = 1563 \text{ cm}^{-1}$ (C=C). – MS- und NMR-Daten: Tab. 1–3.

> $C_{17}H_{32}B_2$ (258.1) Ber. C 79.12 H 12.48 B 8.37 Gef. C 78.85 H 12.14 B 8.85

(Z)-3-(1,5-Cyclooctandiylboryl)-4-(diethylboryl)-3-hexen [(Z)-8]: Man tropft eine Lösung aus 211.5 g (1.35 mol) 9-Cl-9-BBN in 600 ml Et₂O in 3 h zu 237 g (1.36 mol) **B** in 600 ml Et₂O. Dabei kommt der Ether zum Sieden. Nach 3.5stdg. Erhitzen unter Rückfluß und Abfiltrieren von NaCl wird das Lösungsmittel unter Atmosphärendruck und i. Vak. (14 Torr) entfernt (Bad $\leq 60^{\circ}$ C). Anschließend destillieren 310.3 g (84%) klares, gelbes (Z)-8 mit Sdp. 82°C/0.001 Torr. – IR (unverdünnt): $\tilde{v} = 1555 \text{ cm}^{-1}$ (C=C). – Raman (unverdünnt): $\tilde{v} = 1563 \text{ cm}^{-1}$ (C=C). – MS- und NMR-Daten: Tab. 1–3.

> C₁₈H₃₄B₂ (272.1) Ber. C 79.46 H 12.61 B 7.94 Gef. C 79.07 H 12.89 B 8.05

(Z)-3-(Diethylboryl)-4-(diphenylboryl)-3-hexen [(Z)-9]: Zu einer Lösung aus 115.3 g (0.66 mol) **B** und 800 ml Et₂O tropft man in 3.5 h 132.9 g (0.66 mol) ClBPh₂ in 800 ml Et₂O (Temperaturanstieg auf 30 °C). Nach 4stdg. Erhitzen unter Rückfluß und Abfiltrieren von NaCl destilliert man den größten Teil des Ethers unter Atmosphärendruck ab, entfernt die restlichen flüchtigen Bestandteile i. Vak. (12 bzw. 0.001 Torr; Bad ≤ 60 °C) und erhält 185.8 g

(89%) dunkelrotes, viskoses (Z)-9 [¹¹B-NMR: $\delta = 80$ und 69 (1:1) neben Spuren bei ca. 50]. – MS- und NMR-Daten: Tab. 1–3.

$$\begin{array}{c} C_{22}H_{30}B_2 \ (316.1) & \text{Ber. C } 83.58 \ H \ 9.55 \ B \ 6.83 \\ & \text{Gef. C } 83.36 \ H \ 9.86 \ B \ 6.76 \end{array}$$

b) Aus cis-2-Boryl-1-stannyl(silyl)alkenen mit Halogen(organo)boranen

Allgemeine Arbeitsweise zur Herstellung der Verbindungen (Z)-1-(Z)-3 und (Z)-6, (Z)-10a, b, (Z)-13 und (Z)-14 aus $(E)-Et_2B-C(Et) = C(H)SnMe_3$ [(E)-20], $(E)-Et_2BC(Et) = C(Me)SnMe_3$ [(E)-21] oder $(E)-Et_2BC(Et) = C(Me)SnEt_3$ [(E)-22] mit Hal₃B, Hal₂BR oder HalBR₂ (R: s. unten; Hal = Cl, Br): In 25 ml Pentan oder Hexan werden bei -78 °C je ca. 10 mmol der Verbindungen vermischt, auf +25 °C erwärmt und HalSnMe₃ durch Kristallisation bei -78 °C abgetrennt. Anschließend wird das Produkt i. Vak. destilliert (Ausbeuten: >90%).

(Z)-2-(Diethylboryl)-1-(dimethylboryl)-1-buten [(Z)-1]: Aus (E)-20 mit BrBMe₂; 95% Ausb., bei Raumtemp. farblose Flüssigkeit mit Sdp. 58-62°C/12 Torr. -¹¹B-NMR (CDCl₃): δ = 74.1, 85.0 (ca. 1:1).

 $C_{10}H_{22}B_2$ (163.9) Ber. C 73.28 H 13.53 Gef. C 72.75 H 13.21

(Z)-3-(Diethylboryl)-2-(dimethylboryl)-2-penten [(Z)-2]: Aus (E)-21 mit BrBMe₂; 42% Ausb., bei Raumtemp. farblose Flüssigkeit mit Sdp. 30-35°C/0.01 Torr. – NMR-Daten: Tab. 3.

C₁₁H₂₄B₂ (177.9) Ber. C 74.25 H 13.60 Gef. C 73.62 H 13.45

(Z)-2,3-Bis(pl-diethylboryl)-2-penten [(Z)-3]: Aus (E)-22 mit BrBEt₂; 63% Ausb., bei Raumtemp. farblose Flüssigkeit mit Sdp. 45-48 °C/0.01 Torr. – NMR-Daten: Tab. 2 und 3.

(Z)-2-(1-Borolanyl)-3-(diethylboryl)-2-penten [(Z)-6]: Aus (E)-21 mit BrB(CH₂)₄; 45% Ausb., bei Raumtemp. farblose Flüssigkeit mit Sdp. 47-50°C/0.01 Torr. – NMR-Daten: Tab. 3.

C13H26B2 (204.0) Ber. C 76.55 H 12.85 Gef. C 76.22 H 12.56

(Z)-1-(Chlorphenylboryl)-2-(diethylboryl)-1-buten [(Z)-10a]: Aus (E)-20 mit Cl₂BPh. Bei Raumtemp. farblose Flüssigkeit mit Sdp. 85-90 °C/0.01 Torr. – NMR-Daten: Tab. 3; ¹¹B-NMR vgl. auch Lit.^[32]

(Z)-1-(Brommethylboryl)-2-(diethylboryl)-1-buten [(Z)-10b]: Aus (E)-20 mit Br₂BPh; 90% Ausb., bei Raumtemp. farblose Flüssigkeit mit Sdp. 30-33 °C/0.01 Torr. – NMR-Daten: Tab. 3.

(Z)-2-(Dichlorboryl)-3-(diethylboryl)-2-penten [(Z)-12a]: 9.7 g (32 mmol) (E)-21 werden langsam (ca. 1 h) in 3.8 g (32 mmol) Cl₃B getropft, das auf 0°C gekühlt ist. Unter Temperaturanstieg (auf ca. 12°C) fällt weißes ClSnMe₃ aus. Nach 1stdg. Rühren bei Raumtemp. wird alles Flüchtige (8.45 g) i. Vak. (0.001 Torr/Bad ≤ 30 °C) entfernt. Man erhält anschließend 2.05 g (Z)-12a als farblose Flüssigkeit mit Sdp. ≤ 40 °C/0.001 Torr. – EI-MS (70 eV), m/z (%): 218 [M⁺, B₂Cl₂], (<1), 189 [B₂Cl₂] (1), 161 [B₂Cl₂] (14), 108 [B₁] (24), 69 (78), 55 (83), 41 (100). – ¹H-NMR (60 MHz, CDCl₃): $\delta = [2.16 \text{ (q)}, 1.86 \text{ (s)}, 5H]$, 0.96 (m, 13H). – ¹¹B-NMR (Neohexan): $\delta = 71.7$ (br), 52.1 ($h_1 = 140$ Hz) im 1:1-Verhältnis.

(Z)-1-(Dibromboryl)-2-(diethylboryl)-1-buten [(Z)-13]: Aus (E)-20 mit Br₃B; 92% Ausb., bei Raumtemp. farblose Flüssigkeit mit Sdp. 42-45°C/0.01 Torr. - NMR-Daten: Tab. 3.

 $C_8 H_{16} B_2 B r_2 \ (293.6) \quad \text{Ber. C } 32.72 \ \text{H} \ 5.49 \quad \text{Gef. C } 32.10 \ \text{H} \ 5.42$

(Z)-2-(Dibromboryl)-3-(diethylboryl)-2-penten [(Z)-14]: Aus (E)-22 mit Br₃B; 35% Ausb., bei Raumtemp. farblose Flüssigkeit mit Sdp. 48-52°C/0.01 Torr. - ¹¹B-NMR (CDCl₃): δ = 52.6, 69.0 (ca. 1:1).

Versuche zur Herstellung von (Z)-3-(Dichlorboryl)-4-(diethylboryl)-3-hexen [(Z)-12b]: Das äquimolare Gemisch aus (Z)-4 und

c) Durch Substituentenaustausch am Bor-Atom

(Z)-2-(Diethylboryl)-1-(methoxyphenylboryl)-1-buten [(Z)-11]: Aus (Z)-10a mit Me₃SiOMe nach Lit.^[33,48] Bei Raumtemp. farblose Flüssigkeit mit Sdp. 76-77 °C/0.01 Torr. - ¹¹B-NMR (CDCl₃): $\delta = 46.4, 25.3$ (ca. 1:1).

d) Photoisomerisierung der cis-1,2-Diborylalkene und cis-2-Boryl-1-silylalkene

Während der Photoisomerisierungen [Hg-Mittel/Hochdrucklampe (HPK 125 WIL, Philips) im 90-ml-Gefäß (5-mm-NMR-Röhrchen am Kühlmantel)] wird sehr langsam ein Ar-Strom über die gerührte Pentan-Lösung geleitet. Quantitativ werden bei (Z/E)-4 und -9 die ¹H(CH₂)-Quartetts der CEt-Gruppen [(Z/E)-4: $\delta = 2.20, 1.85; (Z/E)$ -9: $\delta = 2.50/2.45, 2.04/1.89$] bzw. bei (E/Z)-18 und -19 die ¹H(Me₃Si)-Resonanzen [(E): $\delta = 0.01 - 0.00;$ (Z): $\delta = 0.013 - 0.15$] gemessen.

trans-2,3-Bis(or-diethylboryl)-2-penten [(E)-3]: Nach 4stdg. UV-Belichten von 0.2 ml (Z)-3 in 0.5 ml CDCl₃ (5-mm-NMR-Röhrchen) erhält man ein (Z/E)-3-Gemisch mit ca. 60% i.e. (Z)-3 [¹H-NMR von (E)-3: $\delta = 1.90$ (CCH₂)]. Weitere NMR-Daten Tab. 2, 3.

trans-3,4-Bis(or-diethylboryl)-3-hexen [(E)-4]: Aus ca. 3 ml (Z)-4 [δ^{1} H(CH₂C) = 2.20 (q) (CDCl₃)] in 70 ml Pentan erhält man nach 6stdg. UV-Belichten bei Raumtemp. eine (Z/E)-4-Lösung mit etwa 40% i.e. (Z)-4 [(E)-4: δ^{1} H(CH₂C) = 1.85 (q)]. – Das gleiche Ergebnis wird in CDCl₃ bei +20°C oder bei –20°C in Pentan nach 6stdg. UV-Belichten erzielt. – ¹H-, ¹¹B- und ¹³C-NMR von (E)-4: Tab. 3. – Der Zusatz von wenig I₂, Ph₂CO oder (Me₃Si)₂ beschleunigt die UV-Isomerisierung nicht.

Konzentrationsabhängige Isomerisierung von (Z)-4 in $CDCl_3$: Nach 2stdg. UV-Belichten ist (Z)-4 in 30proz. Lösung bei Raumtemp. in ein (Z/E)-4-Gemisch mit 62% i.e. (Z)-4 umgewandelt. — In 3proz. Lösung isomerisiert (Z)-4 nach 2stdg. UV-Belichten bei Raumtemp. in ein (Z/E)-4-Gemisch mit 54% i.e. (Z)-4.

Anreichern von (E)-4 aus (Z/E)-4 mit NaOMe: 2.44 g (11.1 mmol) (Z/E)-4 mit 40% i.e. (Z)-4 [δ^{1} H(CH₂C) = 2.20] gibt man rasch (schwache Wärmetönung) zur Suspension von 0.37 g (6.9 mmol) NaOMe in 15 ml Toluol. Nach 3stdg. Rühren bei Raumtemp. wird die farblose, klare Lösung [δ^{11} B: 86 (ca. 30% (E)-4); 77 (ca. 15% (Z)-4); 7.5 (ca. 55% NaOMe-(Z)-4)] i. Vak. (7 Torr) weitgehend eingeengt und die restliche Suspension in Pentan aufgenommen. Nach 1stdg. Rühren bei Raumtemp. werden 1.4 g (46%) NaOMe-4 (¹H-, ¹¹B-, ¹³C-NMR) mit Schmp. 145 °C (Zers.)^[11] abfiltriert. Nach Einengen des Filtrats erhält man 1.32 g (54%) (Z/E)-4 mit 40% i.e. (E)-4 [δ^{1} H(CH₂C) = 1.85], die sich beim Umkondensieren i. Vak. (0.001 Torr) bei 20 °C nicht verändern (¹H-NMR).

40% i.e. (Z)-4 aus 40% i.e. (E)-4 durch UV-Belichten: Beim 6stdg. UV-Belichten einer etwa 15proz. (Z/E)-4-CDCl₃-Lösung mit 40% i.e. (E)-4 bildet sich bei Raumtemp. eine Lösung mit 40% i.e. (Z)-4 [δ^{1} H(CH₂C) = 2.20].

Belichten eines (Z)-4/(Z)-8-Gemischs (ca. 1:1) in CDCl₃: Nach 4stdg. UV-Belichten von ca. 0.2 ml äquimolarem Gemisch aus (Z)-4/(Z)-8 (ca. 1:1) in 0.5 ml CDCl₃ erhält man ein Gemisch aus ca. 40% (Z)-4, ca. 10% (E)-4 [δ^{13} C = 27.9, 15.2 (CEt)] und ca. 50% unverändertem (Z)-8.

Belichten von (Z)-5 in Pentan: Nach 48stdg. UV-Belichten einer Lösung von ca. 3 ml (Z)-5 in etwa 70 ml Pentan bei Raumtemp. wird unverändertes (Z)-5 (1 H-, 13 C-NMR) zurückgewonnen.

Belichten von (Z)-7: Die Lösung von 0.2 ml (Z)-7 in ca. 0.5 ml CDCl₃ bleibt nach 4stdg. UV-Belichten vollkommen unverändert [keine Bildung von (E)-7 (1 H, 13 C-NMR)].

Belichten von (Z)-8: Nach 48stdg. UV-Belichten von ca. 2 ml (Z)-8 in 70 ml Pentan bei Raumtemp. wird unverändertes (Z)-8 (1 H-, 13 C-NMR) zurückgewonnen.

Bildung von (E)-3-(Diethylboryl)-4-(diphenylboryl)-3-hexen [(E)-9] aus (Z)-9 in Pentan: Die Lösung von ca. 3 ml (Z)-9 [¹H-NMR (CD₂Cl₂): $\delta = 2.50$ und 2.45 (q, CCH₂)] in 70 ml Pentan wird etwa 8 h UV-belichtet. Man erhält ein (Z/E)-9-Gemisch mit ca. 30% i.e. (Z)-9 (¹H-NMR); NMR-Daten: Tab. 2, 3.

(E)-9 und (Z/E)-3,4-Bis(ethylphenylboryl)-3-hexen [(Z/E)-iso-9] aus (Z)-9 in CD_2Cl_2 : Die Lösung von ca. 0.2 ml (Z)-9 in 0.5 ml CD_2Cl_2 wird etwa 8 h UV-belichtet. Man erhält ein Gemisch aus ca. 56% (Z)-9, ca. 27% (E)-9 und ca. 16% (Z/E)-iso-9 [¹H-NMR: $\delta = 2.67$ (q), 2.68 (q)].

(Z)-3-(Diethylboryl)-2-(trimethylsilyl)-2-penten [(Z)-18/trans-18] in CDCl₃: Beim UV-Belichten einer CDCl₃-Lösung von (E)-18^[43] [¹H-NMR: $\delta = 0.04$ (CH₃Si)] bei Raumtemp. bildet sich im Gemisch (Z)-18 [¹H-NMR: $\delta = 0.13$ (CH₃Si)]. Nach 15 min sind ca. 5%, nach 2 h ca. 15%, nach 4 h ca. 19%, nach 6 h ca. 23% und nach 8 h ca. 25% (Z)-18 entstanden (¹H-NMR). – NMR-Daten: Tab. 2, 5.

(E/Z)-18 in Pentan: Aus 3 ml (E)-18 in 70 ml Pentan erhält man nach 8stdg. UV-Belichten eine (E/Z)-18-Lösung mit 74% i.e. (E)-18, nach 24 h mit 58% i.e. (E)-18 (¹H-NMR).

(Z)-3-(Diethylboryl)-4-(trimethylsilyl)-3-hexen [(Z)-19/trans-19] in CDCl₃: Aus (E)-19^[43] in CDCl₃ erhält man bei UV-Belichten bei Raumtemp. ein (Z/E)-19-Gemisch mit (nach 15 min) ca. 5% (Z)-19 [δ^{1} H = 0.15 (Me₃Si)]. Nach 2 h sind ca. 19%, nach 4 h ca. 29%, nach 6 h ca. 32% und nach 8 h ca. 36% (Z)-19 entstanden (¹H-NMR). – NMR-Daten: Tab. 2, 5.

(E/Z)-19 in Pentan: Aus 3 ml (E)-19 in 70 ml Pentan bildet sich nach 8stdg. UV-Belichten eine (E/Z)-19-Lösung mit 70% i.e. (E)-19, nach 24 h mit 38% i.e. (E)-19 (¹H-NMR).

Zum Vergleich:

UV-Belichten von (E)-4-(Diethylboryl)-2-methyl-3-(trimethylsi-lyl)-1,3-hexadien [(E)-28]^{143e}: Eine ca. 20proz. Lösung von (E)-28 in CDCl₃ wird nach 6stdg. UV-Belichten unverändert zurückgewonnen (¹H-NMR).

UV-Belichten von (Z)-3-Hexen: Eine ca. 20proz. Lösung von (Z)-3-Hexen in CDCl₃ bleibt nach 24stdg. UV-Belichten vollkommen unverändert (¹H-NMR).

2. Monoborylalkene

a) Durch Hydroborierung von Alkin-Verbindungen^[17]

Allgemeine Arbeitsweise: Zu einem etwa 5fachen Überschuß von Alkin in THF wird bei 0°C bis maximal 25°C R_2BH (R = Et; $R_2 = C_8H_{14}$) in THF getropft.

(Z)-3-(Diethylboryl)-3-hexen [(Z)-15]: Aus 3-Hexin und (Et₂BH)₂ bildet sich (Z)-15 im Gemisch (2:1) mit Ethylbis(3-hcxe-nyl)boran [δ^{11} B (CDCl₃) = 73.2]. – NMR-Daten: Tab. 4.

(Z)-3-(1,5-Cyclooctandiylboryl)-3-hexen [(Z)-23]: Aus 3-Hexin mit (9H-9-BBN)₂; >98% rein (NMR; Tab. 4).

C₁₄H₂₅B (204.15) Ber. C 82.46 H 12.34 Gef. C 82.51 H 12.48

(Z)-9-(1,5-Cyclooctandiylboryl)-1-buten [(Z)-24]: Aus 1-Butin mit (9H-9-BBN)₂. - NMR-Daten: Tab. 4.

(Z)-1-(1,5-Cyclooctandiylboryl)-2-(trimethylsilyl)ethen[(Z)-25]:Aus Me₃SiC \equiv CH mit (9H-9-BBN)₂. – NMR-Daten. Tab. 5.

C13H25BSi (220.2) Ber. C 72.40 H 10.85 Gef. C 72.56 H 11.05

b) Monoborylalkene durch Boryl-Austausch

(Z/E)-3-(Dichlorboryl)-4-methyl-3-hexen [(Z/E)-26]: Nach Vereinigen von 20.17 g (121 mmol) (Z/E)-17^[42] und 14 g (119 mmol) BCl₃ bei $< -10^{\circ}$ C in ca. 30 min läßt man 1 h bei ca. 0°C rühren, entfernt 13.05 g ClBEt₂ i.Vak. (Bad ≤ 40 °C; 14 Torr) und erhält 18.72 g (88%) farbloses (Z/E)-26 mit Sdp. 44°C/14 Torr. – EI-MS (70 eV), m/z (%): 178 [M⁺, B₁Cl₂] (17), 149 (35), 113 (22), 69 (99), 41 (100). $- {}^{1}$ H-NMR (60 MHz, CCl₄): $\delta = 2.34$ (4H), [2.02 (s), 1.83 (s), 3H], [1.07 (t), 1.03 (t), 6H]. $- {}^{11}$ B-NMR (Neohexan): $\delta = 56.2$ $(h_{\downarrow} = 100 \text{ Hz}).$

(E)-3-(Dichlorboryl)-2-(trimethylsilyl)-2-penten [(E)-27]: Aus dem bei 0°C in ca. 45 min vereinigten äquimolaren Gemisch von 19.89 g (90 mmol) (E)-18^[43] und 10.7 g (91 mmol) Cl₃B erhält man nach 3stdg. Rühren bei Raumtemp. und Entfernen von 9.41 g (100%) ClBEt₂ (¹¹B-NMR) i. Vak. (20°C/14 Torr) 18.18 g (87%) farbloses (E)-27 mit Sdp. 31-33°C/0.001 Torr. - EI-MS (70 eV), m/z (%) = 222 [M⁺, B₁Cl₂] (<1), 207 [B₁Cl₂] (1), 187 [B₁Cl₂] (1), 131 [Cl₁] (8), 114 (16), 73 (100). - ¹H-NMR (60 MHz, CDCl₃): $\delta =$ 2.22 (q, 2H), 1.81 (s, 3H), 0.91 (t, 3H), 0.13 (s, 9H). - ¹¹B-NMR (Neohexan): $\delta = 57.6 (h_i = 120 \text{ Hz}).$

(E)-27 mit Cl₃B: Ein Gemisch aus äquimolaren Mengen (E)-27 und Cl₃B bleibt bei Raumtemp. nach mehrstdg. Stehenlassen unverändert (¹¹B-NMR).

- ^[2] ^[2a] 1,2-Bis(diorganoboryl)alkene: R. Köster, "Alkendiyl-organoborane", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 213-216. – ^[2b] R. Köster, Bd. XIII/3a (Hrsg.: R. Köster), S. 213-216. – ^[2b] R. Köster, "Bis[diorganobory]]alkenine", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 240--241.
- ^[3] II, III: ^[3a] R. Köster, "Bis(diorganoboryl)alkene", in Methoden A. H. Koster, "Mission of the second s Chem. 1988, 100, 272–273; Angew. Chem. Int. Ed.Engl. 1988, 27, 299–300. – ^[3d] V. Schäfer, H. Pritzkow, W. Siebert, Chem. Ber. 1989, 122, 401–407. – ^[3e] G. Brodt, W. Siebert, Chem. Ber. 1989, 122, 633–634. – ^[3n] M. Enders, A. Krämer, H. Pritzkow, W. Siebert, Angew. Chem. 1991, 103, 80-81; Angew. Chem. Int. Ed. Engl. 1991, 30, 84-85. - ^[3g] A. Feßenbecker, M. Enders, H. Pritzkow, W. Siebert, I. Hyla-Kryspin, G. Gleiter, Chem. Ber. 1991, 124, 1505 – 1509.
 ^[4] IV: ^[4a] R. Köster, "Tetraorganodiboroxane", in *Methoden Org.*
- *Chem. (Houben-Weyl) 4. Aufl.*, **1982**, Bd. XIII/3a (Hrsg.: R. Köster), S. 810–822, speziell 819. ^[4b] R. Köster, "1,3-Diorgano-1,3-dioxy-diboroxane", in *Methoden Org. Chem. (Houben-Weyl) 4. Aufl.*, **1982**, Bd. XIII/3a (Hrsg.: R. Köster), S. 823–827, speziell 823. ^[4c] W. Haubold, Imeboron IV, Juli 1979, *Abstr. of Papers* No. 41, Utah, USA, S. 67. ^[4d] R. Köster, G. Seidel, Varuade 1982 unveröffentliche Versuche 1983-1985.
- V: [5a] W. Siebert, "Organo-1,3,2-diborathiane", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 880–887, speziell 883–884, 886–887. – ^[5b] B. Wrackmeyer, R. Köster, "Analytik von Organobor-Schwefel-Verbindungen", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1984, Bd. XIII/3a (Hrsg.: R. Köster), S. 476–481, 490, 501. – ^[5e] W. Siebert, Chem.-Ztg. 1974, 98, 479–486. – ^[5d] B. Asgarouladi, R. Full, K.-J. Schaper, W. Siebert, *Chem. Ber.* **1974**, 98, 479–486. – ^[5d] B. Asgarouladi, R. Full, K.-J. Schaper, W. Siebert, *Chem. Ber.* **1974**, 107, 34–47. – ^[5e] W. Siebert, R. Full,

T. Renk, A. Ospici, Z. Anorg. Allg. Chem. 1975, 418, 273-278. 1. Renk, A. Ospici, Z. Anorg. Aug. Chem. 1973, 410, 213–210. – ^[50] W. Siebert, R. Full, C. Krüger, Y. H. Tsay, Z. Naturforsch., Teil B, 1976, 31, 203–207. – ^[58] F. Zettler, H. Hess, W. Siebert, R. Full, Z. Anorg. Allg. Chem. 1976, 420, 285–291. – ^[5h] W. Siebert, R. Full, J. Edwin, K. Kinberger, Chem. Ber. 1978, 111, 823–831. – ^[5h] W. Haubold, A. Gemmler, Chem. Ber. 1980, W. 2020, 2020. 113, 3352-3356.

- ^[6] VI: ^[6a] R. Köster, "1,3-Dihalogen-1,3-diorgano-1,3,2-diborazane", in Methoden Org. Chem (Houben-Weyl) 4. Aufl., 1983, Bd. XIII/3b (Hrsg.: R. Köster), S. 304. – ^[6b] R. Köster, "Te-Bd. Alli/50 (flisg., R. Rosici), 5. 504. — R. Rosici, "Te traorgano-1,3,2-diborazane", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1983, Bd. XIII/3b (Hrsg.: R. Köster), S. 291 – 299, speziell 295, 299. – ^[6c] H. Nöth, W. Tinhof, B. Wrackmeyer, Chem. Ber. 1974, 107, 518 – 528. – ^[6d] W. Siebert, H. Schmidt, Chem. Jone 2014, 107, 518 – 528. – ^[6d] W. Siebert, H. Schmidt, R. Full, Z. Naturforsch., Teil B, 1980, 35, 873-881. Haubold, A. Gemmler, Chem. Ber. 1980, 113, 3352-3356.
- ^[7] VII: ^[7a] M. Drieß, H. Pritzkow, W. Siebert, Angew. Chem. 1987, 99, 789-790; Angew. Chem. Int. Ed. Engl. 1987, 26, 781-782.
 - ^(7b) M. Drieß, P. Frankhäuser, H. Pritzkow, W. Siebert, Angew. Chem. 1989, 101, 219-220; Angew. Chem. Int. Ed. Engl. 1989, 28, 217-218. – ^{17e]} M. Drieß, P. Frankhäuser, H. Pritzkow, W. Siebert, Chem. Ber. 1991, 124, 1497-1503.
- ^[8] VIII: ^[8a] R. Köster, "O-Donator-Triorganoborane", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1983, Bd. XIII/3b (Hrsg.: R. Köster), S. 426–430, speziell 430. ^[8b] B. Wrackmeyer, R. Köster, "Analytik von Lewisbase-Triorganobor-Ver-bindungen", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1983, Bd. XIII/3c (Hrsg.: R. Köster), S. 522. – ^[8c] R. Köster, Note: We will be considered and the set of Ber. 1992, 125, 627-636.
- [9] IX: [9a] R. Köster, "Organo-2,1,3-azadiborate", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1983, Bd. XIII/3b (Hrsg.: R. Köster), S. 865. [9b] W. Siebert, M. Hildenbrand, P. Hornbach, G. Karger, H. Pritzkow, Z. Naturforsch., Teil B, 1989, 44, 1179-1186, speziell 1180.
- [10] X: R. Köster, "Phosphino-organo-borate", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1983, Bd. XIII/3b (Hrsg.: R. Köster), S. 866-867.
- ster), S. 800-80/. ^[11] [^{11a]} R. Köster, "Bis(diorganoboryl)alkene und -alkadiene", in *Methoden Org. Chem. (Houben-Weyl) 4. Aufl.*, **1982**, Bd. XIII/ 3a (Hrsg.: R. Köster), S. 210-213, speziell 213. ^[11b] R. Köster, "Bis(diorganoboryl)alkenine etc.", in *Methoden Org. Chem.* (Houben-Weyl) 4. Aufl., **1982**, Bd. XIII/3a (Hrsg.: R. Köster), S. 240, 244. ^[116] B. Binger, B. Köster, Tatrahedron Lett. **1965**. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 240-241. - [^{116]} P. Binger, R. Köster, Tetrahedron Lett. 1965, 1901-1906. - [^{114]} P. Binger, Tetrahedron Lett. 1966, 2675-2680. - [^{116]} P. Binger, Angew. Chem. 1968, 80, 288-289; Angew. Chem. Int. Ed.Engl. 1968, 7, 286-287. - [^{110]} R. Köster, H.-J. Horstschäfer, P. Binger, Liebigs Ann. Chem. 1968, 717, 1-20. - [^{118]} R. Köster, Pure Appl. Chem. 1977, 49, 765-789.
- ^[12] [^{12a]} R. Köster, "Dihalogen-organo-borane aus Tetrahalogendiboranen(4)", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 475–480, speziell 479–480; dort ältere Literatur. – ^[12b] M. Hildenbrand, H. Pritzkow, U. Zenneck, W. Siebert, Angew. Chem. 1984, 96, 371 – 372; Angew. Chem. Int. Ed. Engl. 1984, 23, 371 - 372. – $1^{[12c]}$ R. Wehrmann, C. Pues, H. Klusik, A. Berndt, Angew. Chem. ^[124] R. Wehrmann, C. Pues, H. Klusik, A. Berndt, Angew. Chem.
 1984, 96, 372-374; Angew. Chem. Int. Ed. Engl. **1984**, 23, 372-374, -- ^[12d] H. Klusik, C. Pues, A. Berndt, Z. Naturforsch., Teil B, **1984**, 44, 1042-1045, -- ^[12e] Lit.^[9b], speziell S. 1179, 1183. - ^[12l] Lit.^[3d]. - ^[12g] G. E. Herberich, C. Ganter, L. Wesemann, Chem. Ber. **1990**, 123, 49-51. - ^[12h] G. Knörzer, W. Siebert, Z. Naturforsch., Teil B, **1990**, 45, 15-18.
 ^[13] ^[13a] R. Köster, "Dihalogen-organo-borane" aus Triiodoboran mit Alkinen, in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., **1982**, Bd. XIII/3a (Hrsg.: R. Köster), S. 468. - ^[13b] W. Siebert, Universität Heidelberg. Mitteilung **1981**.
- Universität Heidelberg, Mitteilung 1981.
- Universität Heidelberg, Mitteilung 1981.
 ^[14] [^{14a]} R. Köster, "Diorgano-halogen-borane", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 379-431, speziell 399. ^[14b] P. Jutzi, A. Seufert, J. Organomet. Chem. 1979, 169, 327-355.
 ^[15] [^{15a]} R. Köster, "Diorgano-halogen-borane", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 402-409, 415-424. ^[15b] R. Köster, "Dihalogen-organo-borane" in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 440-444. ^[15c] R. Köster, Diorgano-organo-oxy-horane aus Halogenbora. R. Köster, "Diorgano-organooxy-borane aus Halogenbora-

^[1] 109. Mitteilung über Borverbindungen. – 108. Mitteilung: R. Köster, G. Seidel, K. Wagner, B. Wrackmeyer, Chem. Ber. 1993,

- nen", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 543-547, speziell 545. ^[16] [^{16a]} P. Binger, R. Köster, *Inorg. Synth.* 1974, 15, 136-141. ^[16b] P. Binger, G. Benedikt, G. W. Rotermund, R. Köster, *Liebigs*
- Ann. Chem. 1968, 717, 21–40. ^[17] [^{17a]} R. Köster, "Alkenyl-diorgano-borane aus Diorgano-hydroboranen mit Alkinen", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 183–190, spe-ziell 188–190. – ^[17b] R. Köster, H.-J. Horstschäfer, P. Binger, P. K. Mattschei, Liebigs Ann. Chem. 1975, 1339-1356. - $[^{17c]}$ H. C. Brown, G. A. Molander, J. Org. Chem. 1986, 51, 4512-4514.
- ^[18] Photochemische Umwandlung ungesättigter Organoborane: ^[18a] H. Meier, "Photochemie am ungesättigten Kohlenstoff-Atom", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1975, Bd. IV/ 5a, S. 189-212. – ^[186] A. Ritter, "Photochemie am Kohlenstoff-5a, S. 189-212. - [^{186]} A. Ritter, "Photochemie am Kohlenstoff-Bor-System", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl.,
 1975, Bd. IV/5b, S. 1398-1405. - [^{18c]} R. Köster, "Olefinische Triorganoborane", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl.,
 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 214. - [^{18d]} R. Köster, "Amino-diorgano-borane", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl.,
 1983, Bd. XIII/3b (Hrsg.: R. Köster), S. 214. - [^{18d]} R. Köster,
 S. 48. - [^{18e]} K. G. Hancock, D. A. Dickinson, J. Am. Chem. Soc. 1972, 94, 4396 - 4398. - [^{186]} T. J. Sobieraski, K. G. Hancock, J. Am. Chem. Soc. 1982, 104, 7533 - 7541. - [^{18g]} B. Wrackmeyer Polyhedron 1986, 5, 1709 - 1711, speziell S, 1711
- meyer, Polyhedron 1986, 5, 1709-1711, speziell S. 1711. ^{[19] [19a]} B. Wrackmeyer, R. Köster, "Analytik der Organobor-Verbindungen", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1984, Bd. XIII/3c (Hrsg.: R. Köster), S. 377–611, speziell 424–438. – ^[196] D. Henneberg, H. Damen, R. Köster, Liebigs Ann. Chem. 1961, 640, 52-79
- ^[20] R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 1987, 120, 669-683.
- ^[21] R. Köster, G. Seidel, B. Wrackmeyer, Chem. Ber. 1989, 122, 1825-1850.
- ^[22] B. Wrackmeyer, K. Horchler, Organometallics 1991, 9, 1881 - 1886
- ¹⁰⁵¹⁻¹⁰⁵⁰
 ^[23] B. Wrackmeyer, Prog. Nucl. Magn. Reson. Spectrosc. 1979, 12, 227-259. ^[23b] B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 1988, 20, 61-203. ^[23c] B. Wrackmeyer, R. Köster, "NMR-Spektroskopie der Organobor-Verbindungen", in Me-thoden Org. Chem. (Houben-Weyl) 4. Aufl., 1984, Bd. XIII/3c (Hrsg.: R. Köster). S. 394-418, speziell 402-405.
- ^[24] J. K. M. Sanders, J. D. Mersh, Prog. Nucl. Magn. Reson. Spectrosc. 1982, 15, 353-400.
- ^[25] Y. Yamamoto, I. Moritani, J. Org. Chem. 1975, 40, 3434-3437.
 ^[26] ^[26a] P. Jutzi, A. Seufert, J. Organomet. Chem. 1979, 169, 357-372. ^[26b] J. R. Durig, S. A. Johnston, T. F. Moore, J. 2007. Chem. 4444 (2007). D. Odom, J. Mol. Struct. 1981, 72, 85–97; Chem. Abstr. 1981, 95, 5990. – ^[26c] J. D. Odom, T. F. Moore, S. A. Johnston, J. D. 95, 5990. – $(^{260}$ J. D. Odom, I. F. Moore, S. A. Johnston, J. D. Durig, J. Mol. Struct. 1979, 54, 49–58; Chem. Abstr. 1979, 91, 107–363. – $(^{26d})$ N. M. D. Brown, F. Davidson, J. W. Wilson, J. Organomet. Chem. 1981, 209, 1–11. – $(^{26e})$ C. D. Blue, D. J. Nelson, J. Org. Chem. 1983, 48, 4538–4542. – $(^{269})$ R. J. Binnewirtz, H. Klingenberger, R. Welter, P. Paetzold, Chem. Ber. 1983, 116, 1271–1284. – $(^{26e})$ A. J. Ashe, III., S. T. Abu-Orabi, S. M. D. C. M. Chem. 1983, 48, 901–902. O. Eisenstein, H. T. Sandford, J. Org. Chem. 1983, 48, 901–903. $-\frac{126h}{2}$ C. Habben, A. Meller, Chem. Ber. 1984, 117, 2531–2537. - ^[26i] G. E. Herberich, W. Boveleth, B. Heßner, M. Hostalek, D. P. J. Köffer, H. Ohst, D. Söhnen, *Chem. Ber.* **1986**, *119*, 420–433. – ^[26] C. Pues, G. Baum, W. Massa, A. Berndt, Z. Naturforsch., Teil B, **1988**, *43*, 275–279. – ^[26k] A. Maercker, W. Brieden, Th. Schmidt, H. D. Lutz, *Angew. Chem.* **1989**, *101*, 477, 470, 477, 470 7–479; Angew. Chem. Int. Ed. Engl. **1989**, 28, 477–479
- [27] [27a] H. Klusik, C. Pues, A. Berndt, Z. Naturforsch., Teil B, 1984, 39, 1042-1045. [27b] J. J. Uhm, H. Römisch, H. Wadepohl, 30, 1042-1045. W. Siebert, Z. Naturforsch., Teil B, 1988, 43 306-308. – ^[27e] V. Schäfer, H. Pritzkow, W. Siebert, Angew. Chem. 1988,
- ¹⁰ V. Schalel, H. FHIZKÓW, W. Slebell, Algew. Chem. 1968, 100, 272–273; Angew. Chem. Int. Ed. Engl. 1988, 27, 299–300. ^[27d] G. Knörzer, W. Siebert, Z. Naturforsch., Teil B, 1990, 45, 15–18. ^[27e] Lit.^[9b], speziell S. 1183.
 ^[28] [^{28a]} G. A. Olah, R. J. Spear, J. Am. Chem. Soc. 1975, 97, 1539–1546. ^[28b] G. A. Olah, H. Mayr, J. Am. Chem. Soc. 1976, 98, 7333–7340. ^[28c] G. A. Olah, J. S. Staral, G. Asencio, 1976, 98, 7333–7340. ^[28c] G. A. Olah, J. S. Staral, G. Asencio, G. Liang, D. A. Forsyth, G. D. Mateescu, J. Am. Chem. Soc. 1978, 100, 6299-6308.
- ^[29] P. v. R. Schleyer, A. J. Kos, Tetrahedron 1983, 39, 1141-1150.

- ^[30] Vgl. auch ähnliche Einflüsse auf die Linienbreite von ¹¹⁹Sn-Resonanzsignalen, beruhend auf der unterschiedlichen Ausmitte-lung von ${}^{3}J({}^{119}Sn^{11}B)$: B. Wrackmeyer, J. Organomet. Chem. **1989**, 364, 331-342
- ^[31] B. Wrackmeyer, G. Kehr, R. Boese, Chem. Ber. 1992, 125, 643-650.
- ^[32] B. Wrackmeyer, Polyhedron 1986, 5, 1709-1721.
- ^[33] B. Wrackmeyer, M. Schilling, unveröffentlichte Versuche, Universität München, 1982.
- [34] K. Köster, "Organobor-Halogen-Verbindungen", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 379 - 488, speziell 402 - 410 und 440 - 444.
- ^[35] R. Köster, W. Schüßler, R. Boese, Chem. Ber. 1990, 123, 1945 – 1952.
- ^[36] [^{36a]}K. Seevogel, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr. [^{36b]} MS-Daten: D. Henneberg, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr.
- ^[37] [^{37a]} NMR-Kartei: Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr. ^[37b] Messungen im Laboratorium für Anorganische Chemie der Univ. Bayreuth.
- ^[38] Vgl. H.-D. Scharf, J. Fleischhauer, J. Aretz, "Apparative Hilfsmittel - Allgemeines zur Ausführung photochemischer Reaktionen", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1975, Bd. IV/5a, S. 41-89.
- ^{BO.} 1V/3a, S. 41-65.
 ^[39] ^[39a] Vgl. R. Köster, "Hydro-triorgano-borate", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., **1983**, Bd. XIII/3b (Hrsg.: R. Köster), S. 803-813, speziell 806. ^[39b] R. Köster, W. E. Köster, S. 803-813, speziell 806. ^[39b] R. Köster, W. Schüßler, R. Boese, D. Bläser, Chem. Ber. 1991, 124, 2259-2262.
- [40] R. Köster, "Olefinische Triorganoborane", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 174–235, speziell 188–190. ^[41] Vgl. Lit.^[40], S. 203.
- ^[42] Verbindungsgemisch Et₂B(CEt) = C(Me)Et [(Z/E)-17] entspre-chend Lit.^[41] aus Na₂[Et₃BC = CBEt₃] mit MeSO₃Ar. ^[43] (^{33a]} P. Binger, R. Köster, Synthesis **1973**, 309-311, ^[43b] R.
- Köster, L. A. Hagelee, Synthesis 1975, $309-311. ^{[430]}$ R. Köster, L. A. Hagelee, Synthesis 1976, $118-120. ^{[43c]}$ R. Köster, G. Seidel, B. Wrackmeyer, Chem. Ber. 1989, 122, 1825-1850. $^{[43d]}$ R. Köster, "Siliciumhaltige Triorganoborane", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 291-303, speziell 299-302. R. Köster, P. Binger, W. V. Dehboff, Surth Langer, Matril Org.
- [44] R. Köster, P. Binger, W. V. Dahlhoff, Synth. Inorg. Metal-Org. Chem. 1973, 3, 359 367.
- [45] R. Köster, P. Binger, Inorg. Synth. 1974, 15, 141-153
- [46] R. Köster, M. A. Grassberger, Liebigs Ann. Chem. 1968, 719, 169 - 186.
- ^[47] R. Köster, "Diorgano-halogen-borane", in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster), S. 379-431, speziell 382ff.
- ^[48] R. Köster, "Diorgano-organooxy-borane aus Halogenbora-, in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, nen" Bd. XIII/3a (Hrsg.: R. Köster), S. 543-547, speziell 545.

[289/92]

CAS-Registry-Nummern

(Z)-1: 143775-11-5 / (Z)-2: 143775-12-6 / (E)-3: 143775-25-1 / (Z)-(Z)-1: 143775-11-5 / (Z)-2: 143775-12-6 / (E)-3: 143775-25-1 / (Z)-3: 138517-68-7 / (E)-4: 143775-26-2 / (Z)-4: 138517-70-1 / (Z)-5: 138517-70-4 / (Z)-6: 143775-13-7 / (Z)-7: 138517-70-8 / (Z)-8: 138517-71-2 / (E)-9: 143775-27-3 / (Z)-9: 138517-72-3 / (E)-iso-9: 143775-23-9 / (Z)-iso-9: 143775-22-8 / (Z)-10a: 66089-03-0 / (Z)-10b: 143775-19-3 / (Z)-11: 66089-04-1 / (Z)-12a: 143775-14-8 / (Z)-12b: 143775-19-3 / (Z)-11: 66089-04-1 / (Z)-12a: 143775-14-8 / (Z)-12b: 143775-19-3 / (Z)-11: 66089-04-1 / (Z)-12a: 143775-14-8 / (Z)-12b: 143775-20-6 / (Z)-13: 143775-15-9 / (Z)-14: 143775-16-0 / (Z)-15: 139688-17-8 / 16: 118798-60-0 / (E)-17: 61204-98-6 / (Z)-17: 143775-21-7 / (E)-18: 79483-02-6 / (Z)-18: 109297-58-7 / (E)-19: 59766-51-7 / (Z)-19: 59766-52-8 / (E)-20: 66088-87-7 / (E)-12: 16504-05-3 / (Z)-25: 109297-56-5 / (E)-26: 143775-17-1 / (Z)-26: 143775-105-3 / (Z)-25: 109297-56-5 / (E)-26: 143775-17-1 / (Z)-26: 143775-24-0 / (E)-27: 143775-18-2 / (E)-28: 111869-79-5 / A: 14949-99-6 / B: 15170-87-3 / C: : 14515-93-6 / CIBEt₂: 5314-83-0 / CIBPh₂: 3677-81-4 / BrBMe₂: 5158-50-9 / BrBEt₂: 19162-10-8 / BrB[CH₂]₄: 143775-28-4 / Cl₂BPh: 873-51-8 / Br₂BPh: 4151-77-3 / Cl₃B: 10294- $34-5 / Br_3B$: $10294-33-4 / Me_3SiOMe$: $1825-61-2 / Me_3SiC \equiv CH$: 1066-54-2 / (Et₂BH)₂: 12081-54-8 / 9-Cl-9-BBN: 22086-34-6 / (9-H-9-BBN)₂: 21205-91-4 / 3-Hexin: 928-49-4 / 1-Butin: 107-00-6 / Ethylbis(3-hexenyl)boran: 143775-29-5